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Measuring sin22θ13 in Double Chooz
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Targeting θ13

Neutrino oscillations:

|να〉 =
3∑

i=1

U∗αi |νi〉

U =

 1 0 0
0 cos θ23 sin θ23

0 − sin θ23 cos θ23

·
 cos θ13 0 sin θ13e

−iδ

0 1 0
− sin θ13e

+iδ 0 cos θ13

·
 cos θ12 sin θ12 0
− sin θ12 cos θ12 0

0 0 1


I Goal of Double Chooz, Daya Bay, RENO: precisely measure sin22θ13

. May help to explain flavor structure

. Prerequisite for determining ν mass hierarchy

. Needed for measuring CP violation in ν oscillations
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θ13 measurements with reactor neutrinos

P(νe → νe) = 1− sin2 2θ13 sin2(∆m2
31L

4E )− sin2 θ12 cos4 (θ13) sin2
(

∆m2
12L

4E

)

Near

detector

Measure reactor νe flux
before oscillation →

Constrain spectrum shape
and normalization

Far

detector
Measure oscillated
νe spectrum →

determine sin2 2θ13
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Experiment layout

2 PWRs
2× 4.25 GWth

∼ 1021 νe/s

Near detector
〈L〉 ≈ 400 m
120 m.w.e.

∼ 300 νe/day (Gd)
since 2014

Far detector
〈L〉 ≈ 1050m

300 m.w.e.
∼ 40 νe/day (Gd)

since 2011
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Inverse beta decay detection

I Inverse beta decay (IBD):

νe + p→ n + e+

I Prompt signal: e+ ionization +
annihilation, Evis ≈ Eν − 0.8 MeV

I Delayed signal: n capture on Gd or H H

Gd channel

time

8 MeV

∼ 30µs

H channel

time

2.2 MeV

∼ 200µs
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Detector design

Outer Veto (OV): Array of plastic scintillator strips

Wide-area cosmic µ detection

Steel shield (15 cm thick)

Inner Detector (ID)

Neutrino target: 10.3 m3 Gd-loaded scintillator

IBD sensitive region (Gd)

Gamma catcher: 22.3 m3 scintillator

Escaping γ measurement (Gd)

IBD sensitive region (H)

Buffer + PMTs: 110 m3 mineral oil, 390 PMTs

Passive radioactivity shielding.

Inner Veto (IV): 90 m3 liquid scintillator, 78 PMTs

Cosmic µ, fast neutron, and external γ detection
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Calibration systems

I LED light injection
. PMT gains and time offsets

I Source deployment systems
. z-axis in Target
. Guide tube in GC (limited coverage)
. Radioactive sources

I γ (60Co, 137Cs, 68Ge)
I n (252Cf)

. Laser diffuser ball

I Natural radioactivity
. Spallation n captures on Gd, H, C
. α particles from Bi-Po decays
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Why the H channel?

Benefits

I Double the statistics of standard Gd channel

I Somewhat independent systematics

⇒ Validate and enhance Gd-based results
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Why the H channel?

Benefits

I Double the statistics of standard Gd channel

I Somewhat independent systematics

⇒ Validate and enhance Gd-based results

Challenges

I Potentially huge accidental coincidence background

I GC volume not as well characterized

⇒ Need new techniques beyond Gd analysis
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Energy reconstruction
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Energy reconstruction

Evis = Npe × fu(ρ, z)× fPE/MeV × f datas (E 0
vis, t)× f MC

nl

Raw charge → PE conversion performed with nonlinear
gain function developed from light injection data
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Energy reconstruction

Evis = Npe × fu(ρ, z)× fPE/MeV × f datas (E 0
vis, t)× f MC

nl

Position dependence greatly reduced using
“map” from spallation n captures on H
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Energy reconstruction

Evis = Npe × fu(ρ, z)× fPE/MeV × f datas (E 0
vis, t)× f MC

nl

PE → MeV conversion performed with absolute energy
scale defined by n captures from 252Cf source at center (2.223 MeV)

Visible Energy (MeV)
1.0 1.5 2.0 2.5 3.0

E
nt

rie
s/

 5
0 

ke
V

0

100

200

300

400

500

600

700

data

MC

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 15/1



Energy reconstruction

Evis = Npe × fu(ρ, z)× fPE/MeV × f datas (E 0
vis, t)× f MC

nl

Time variations, due to scintillator aging
and electronics effects, corrected using
multiple cosmogenic/ambient sources
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Energy reconstruction

Visible Energy (MeV)
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σ
Evis

=
√

a2

Evis
+ b2 + c2

E 2
vis

Fit to data:
a = 0.0773± 0.0025
b = 0.0182± 0.0014
c = 0.0174± 0.0107

Fit to MC:
a = 0.0770± 0.0018
b = 0.0183± 0.0011
c = 0.0235± 0.0061

Excellent data-MC agreement in energy scale and resolution
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Backgrounds in Double Chooz
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Accidental coincidences

Prompt/delayed signals:

I Primordial radionuclide γ

. 40K : 1.3 ∼ 1.4 MeV

. 208Tl : 2.6 MeV

I Spallation n captures

I Decays of cosmogenic
isotopes

Largest background in
previous H analysis!

Glovebox

OV

T + GC

ID

IV

Tl, K

γ

γ
β−/γ

cosmic µ

nH

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 19/1



Fast neutrons

Signals

I Prompt: p recoil

I Delayed n capture

Glovebox

OV

T + GC

ID

IV

cosmic µ

n
n

H

n

n

n

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 20/1



Stopping muons

Signals:

I Prompt: track cosmic
µ entering through
acceptance hole

I Delayed: Michel e±

Glovebox

OV

T + GC

ID

IV

cosmic µ

Michel e−
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Decays of cosmogenic 9Li and 8He

Signals:

I Cosmic µ–induced
9Li, 8He production

I Long lifetimes
(∼ 200 ms)

I β − n decay mimics IBD

Glovebox

OV

T + GC

ID

IV

cosmic µ

(9Li or 8He)
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Signal selection
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Selection cuts

Cut (new) Rejects

Basic background rejection

Muon veto (1.25 ms) µ and decay products

Light noise cut Spontaneous light emission

OV veto Fast neutrons, stopped µ

Multiplicity cut Multiple spallation n

IBD selection

Delayed coincidence Accidental coincidences

Advanced background vetoes

Vertex quality veto Stopped µ, spontaneous light emission

IV veto (prompt) Fast neutrons, stopped µ, external γ

IV veto (delayed) Fast neutrons, external γ

Li+He veto Cosmogenic radionuclide decays

Pulse shape–based veto Fast neutrons
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Delayed coincidence selection

I Delayed energy

I Prompt-delayed time separation

I Prompt-delayed space separation
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Previously, cut-based approach

Now: multivariate approach

Colors in above plots: accidentals, measured from data; signal MC; IBD candidates from data;
points = accidentals-subtracted IBD candidates

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 25/1



Artificial Neural Network algorithm

ANN-based multivariate tool

I Inputs: correlation time, correlation distance, delayed energy

I Trained with data-derived accidentals sample, signal MC

I Very good data-MC agreement

⇒ Signal to BG ratio 10× better than previous H analysis
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Artificial Neural Network algorithm
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IBD spectrum clearly visible after reduction of accidental BG
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Vertex quality veto

I Cut on vertex reconstruction likelihood (FV)

. Vertex reconstruction assumes point light sources

. Michel e− in chimney have large FN from event topology/geometry

. Require: Evis ≥ 0.2755× e(FV /2.0125)
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IV veto (prompt)

I Original IV use: µ veto, n shield

I Also tags fast neutron & Compton γ (new)

. Reject IV-ID coincident activity (w/in 80 ns, 4 m)
(≥ 2 PMT hits & charge ≥ 0.2 MeV required)

. IVV (prompt) rejects ∼ 15% of accidental BG

γ − γ

IV ID

γ

γ

n

n.c.

SM µ

e−

IV

ID

FN

IV ID

µ
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n
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IV veto (delayed) (new)

I Not used in Gd analysis to avoid IBD inefficiency

I Valuable in H analysis to reduce 208Tl γ (peak at 2.6 MeV)

. Time coincidence cut tuned to avoid IBD rejection

. Same condition as IVV (prompt)

. IVV (p + d) rejects ∼ 27% of accidentals after ANN (IVV (d) alone: ∼ 15%)

γ − γ

IV ID

γ

γ

γ
νe

IV ID

γ

νe

IBD
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9Li and 8He veto

I 9Li and 8He likelihood cut

. LLi built from number of n after µ, distance from IBD prompt to µ track

. Events with LLi > 0.4 rejected

. Rejects ∼ 55% of cosmogenic BG

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 31/1



Pulse shape–based veto (new)

I Fast neutron showers produced
from µ spallation

. Major proton recoil proton ⇒ prompt signal

. Smaller recoils within 256 ns recorded in
same event ⇒ earlier PMT pulses

I Veto rejects ∼ 25% of fast neutron BG
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IBD candidates

Day
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DC-III (n-H) Preliminary
-10.4 day±Average Rate: 68.9

-10.0 day±MC Average Rate: 64.9

2 reactors on
(∼ 60%)

1 reactor on
(∼ 40%)

Both reactors off (∼ 7.15 days)

BG-subtracted IBD candidate rate / MC expectation (no osciillation):
(H): 62.1 day−1 / 64.9 day−1

c.f. (Gd) (JHEP 10(2014) 086): 35.5 day−1 / 37.5 day−1
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Remaining backgrounds
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Remaining accidental background

Visible Energy (MeV)
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I Rate = 4.334± 0.011 per day

I Minor impact on θ13 precision
→ Major achievement of this analysis

Measurement method: Off-time windows

prompt delayed delayed

1 sec 1.7 msec
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Remaining fast neutrons + stopping muons

Visible Energy (MeV)
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I Shape measured from IV-tagged candidates

I Rate estimated using normalization > 20 MeV

I Mostly FN; SM ∼ 0.02 per day
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Remaining 9Li + 8He backgrounds
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I Divide IBD candidates according to energy deposited by possible progenitor µ

I If needed, enhance purity with ∆Rprompt−µ cut (find efficiency from MC)

I Fit ∆Tprompt−µ distributions → Li+He component
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Summary of remaining backgrounds

BG
Rate

(event/day)
Shape

Suppression w.r.t
previous H analysis

Gd rate
(event/day)

Accidental 4.334± 0.011 data (off-time) ×16.9 0.070± 0.003

Fast n + stopped µ 1.55± 0.15 data (IV tag) ×2.0 0.604± 0.051

9Li + 8He 0.95+0.57
−0.33 data (Li+He tag) ×2.9 0.97+0.41

−0.16

I 9Li+8He rate uncertainty dominates BG systematics

I Accidentals well controlled and well measured
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Reactors-off data

I Unique feature of Double Chooz

Number of
events

All
E > 12MeV

(Correlated BG)

Before Vetos 10185 23

After Vetos 63 1

Rejection ∼ 160× ∼ 23×

I Expected rate: 7.05+0.6
−0.4 events/day

(including 0.33± 0.10 residual νe/day)

I Measured rate: 8.8± 1.1 events/day

I Validates background model

I Constrains background rates in oscillation fits
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Reactor simulation
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Reactor flux prediction

Day after April 13, 2011
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Bugey4 “anchor”: 〈σf 〉R = 〈σf 〉Bugey +
∑

k (αk − αBugey
k ) 〈σf 〉k

i = energy bin index, R = {Reactor 1, Reactor 2}, k = {235U, 238U, 239P, 241P}
ε = detection efficiency, Np = number of protons in fiducial volume, LR = distance between R th reactor and detector
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Reactor flux systematics

Relat Error (%)
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Without Bugey4 (2.7%)

Bugey4 used as “virtual near detector”
⇒ flux normalization uncertainty: 1.7% (∼ 30% less than w/o Bugey4)

Rachel Carr (Columbia University) Double Chooz — July 23, 2015 42/1



Systematic uncertainties
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Detection systematics

I δ(detection) = uncertainty on all MC correction factors, including:

. Proton number: ∼ 0.91% (dominant)

I Includes Target, GC, acrylics
I GC liquid weighed less precisely than Target

. Spill uncertainty: ∼ 0.29%

. Hydrogen fraction: ∼ 0.21%

. Selection efficiency: ∼ 0.22%

I δ(detection) = 1.0%

I Comparable to Gd, except proton number
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Uncertainties in fits

Normalization uncertainties:

Source of uncertainty First H analysis (2013) Current H analysis (2015) Latest Gd analysis (2014)

Reactor flux 1.7% 1.7% 1.7%

Signal detection efficiency 1.6% 1.0% 0.6%

9Li+8He background 1.6% +0.9%
−0.5%

+1.1%
−0.4%

Fast n + stopping µ 0.6% 0.2% 0.1%

Accidental background 0.2% < 0.1% < 0.1%

Statistics 1.1% 0.6% 0.8%

Shape uncertainties, for Rate+Shape fit:

I Reactor spectrum

I Background spectra

I Energy scale
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sin22θ13 measurements
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Reactor Rate Modulation (RRM) analysis

I Compare observed and expected IBD rates in different
reactor power bins (i = 1, ...,N), fitting for sin22θ13 and
total background rate, B:

Robs
i = B +

(
1− sin22θ13

〈
sin2 1.27∆m2L

Eν

〉)
Rexp, no osc
i

I Independent of model for reactor spectrum shape

I Gains leverage from unique reactor-off data

I Optional use of a priori background model
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RRM without background model

No a priori background model ... a unique Double Chooz analysis!

sin22θ13 = 0.123+0.042
−0.043
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RRM with background model

Constrain with a priori background model → increase sin2 2θ13 precision

sin22θ13 = 0.098+0.038
−0.039
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RRM: Gd+H combination, with background model

Combining this H-based result with latest Gd-based result (2014):

sin22θ13 = 0.090± 0.033
H only: sin2 2θ13 = 0.098+0.038

−0.039, Gd only: sin2 2θ13 = 0.090+0.034
−0.035

Correlations between Gd and H have minimal impact. This result assumes no correlation.
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Rate+Shape fit
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Data
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 = 0.12413θ22Best fit: sin
Total systematic uncertainty
Reactor flux uncertainty

I Uses prompt energy spectrum,
with single reactor power bin

I Able to constrain backgrounds →
better sin2 2θ13 precision

I sin2 2θ13 = 0.124+0.030
−0.039

I Large χ2 in ∼ 4-6 MeV, region of
spectrum distortion observed in
latest Gd analysis
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Reactor spectrum features

Visible Energy (MeV)

1 2 3 4 5 6 7 8

O
bs

er
va

tio
n 

/ N
o-

os
ci

lla
tio

n 
pr

ed
ic

tio
n

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5 H-III data
Gd-III data
No oscillation
H-III systematic uncertainty
Gd-III systematic uncertainty

Double Chooz Preliminary

I Consistent features observed in Gd and H channels

I Excess in 4-6 MeV region is correlated with reactor power

I Ongoing investigations in neutrino and reactor communities

(Plot on right, from Gd 2014 analysis, uses a simplified n-H selection.)
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Looking forward
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Future precision, including near detector

Projected precision sin2 2θ13, using only Gd captures:

Adding H capture data → better precision in shorter timescale.
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Conclusions and outlook

I New H results validate and enhance Gd results:

. New H analysis (RRM): sin22θ13 = 0.098+0.038
−0.039

. [4, 6] MeV spectrum distortion measurement

. Combined Gd+H: sin22θ13 = 0.090± 0.033
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I New techniques advance capability of H-based analyses:

. New background rejection methods: ANN, pulse shape, IV veto

. Accidental BG reduced > 10× from previous H analysis

. Approaching precision of Gd-based measurement
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. [4, 6] MeV spectrum distortion measurement

. Combined Gd+H: sin22θ13 = 0.090± 0.033

I New techniques advance capability of H-based analyses:

. New background rejection methods: ANN, pulse shape, IV veto

. Accidental BG reduced > 10× from previous H analysis

. Approaching precision of Gd-based measurement

I Paving the way for two-detector analyses:
. Already taken 6 months of data

. Working now on a two-detector sin2 2θ13 analysis

. Also planned: sterile neutrino analyses, reactor spectrum measurements
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